在精确定位控制系统中,为了提高控制精度,准确测量控制对象的位置是十分重要的。目前,检测位置的办法有两种:其一是使用位置传感器,测量到的位移量由变送器经A/D转换成数字量送至系统进行进一步处理。此方法精度高,但在多路、长距离位置监控系统中,由于其成本昂贵,安装困难,因此并不实用;其二是采用光电轴角编码器进行精确位置控制。光电轴角编码器根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。而绝对式编码器是直接输出数字量的传感器,它是利用自然二进制或循环二进制(格雷码)方式进行光电转换的,编码的设计一般是采用自然二进制码、循环二进制码、二进制补码等。特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码;抗干扰能力强,没用累积误差;电源切断后位置信息不会丢失,但分辨率是由二进制的位数决定的,根据不同的精度要求,可以选择不同的分辨率即位数。目前有10位、11位、12位、13位、14位或更高位等多种。
其中采用循环二进制编码的绝对式编码器,其输出信号是一种数字排序,不是权重码,每一位没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成其他信号,要经过一次码变换,变成自然二进制码,在由上位机读取以实现相应的控制。而在码制变换中有不同的处理方式,本文着重介绍二进制格雷码与自然二进制码的互换。
一、格雷码(又叫循环二进制码或反射二进制码)介绍
在数字系统中只能识别0和1,各种数据要转换为二进制代码才能进行处理,格雷码是一种无权码,采用绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。格雷码属于可靠性编码,是一种错误最小化的编码方式,因为,自然二进制码可以直接由数/模转换器转换成模拟信号,但某些情况,例如从十进制的3转换成4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它是一种数字排序系统,其中的所有相邻整数在它们的数字表示中只有一个数字不同。它在任意两个相邻的数之间转换时,只有一个数位发生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。另外由于最大数与最小数之间也仅一个数不同,故通常又叫格雷反射码或循环码。下表为几种自然二进制码与格雷码的对照表:
十进制数 | 自然二进制数 | 格雷码 | 十进制数 | 自然二进制数 | 格雷码 |
0 | 0000 | 0000 | 8 | 1000 | 1100 |
1 | 0001 | 0001 | 9 | 1001 | 1101 |
2 | 0010 | 0011 | 10 | 1010 | 1111 |
3 | 0011 | 0010 | 11 | 1011 | 1110 |
4 | 0100 | 0110 | 12 | 1100 | 1010 |
5 | 0101 | 0111 | 13 | 1101 | 1011 |
6 | 0110 | 0101 | 14 | 1110 | 1001 |
7 | 0111 | 0100 | 15 | 1111 | 1000 |
二、二进制格雷码与自然二进制码的互换
2、二进制格雷码转换成自然二进制码
A)、软件实现法(参见示例工程中的 Gray to Binary )
根据二进制格雷码转换成自然二进制码的法则,可以得到以下的三种代码方式
- static unsigned int GraytoDecimal(unsigned int x
- unsigned int y = x;
- while(x>>=1)
- y ^= x;
- return y;
- static unsigned int GraytoDecimal(unsigned int x)
- x^=x>>16;
- x^=x>>8;
- x^=x>>4;
- x^=X>>2;
- x^=x^1;
- return x;
- static unsigned int GraytoDecimal(unsigned int x)
- int i;
- for(i=0;(1<<i)<sizeof(x)*8;i++
- x^=x>>(1<<i)
- return x;
//以上代码实现了unsigned int型数据到自然二进制码的转换,最高可转换32位格雷码,超出32位将溢出。将数据类型改为int型即可实现31位格雷码转换。
上述代码即可用于VC控制程序中,也可以用于单片机控制程序中。在单片机程序设计时,若采用汇编语言编程,可以按相同的原理设计程序;若采用C语言编程,则可以直接利用上述代码,但建议用unsigned int函数。
B)、硬件实现法
根据二进制格雷码转换成自然二进制码的法则,即可用异或集成电路74ls136实现,也可以利用可编程器件PLD等编程实